论文标题

通过利用结构意识和互补数据集来改善单程深度估计

Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets

论文作者

Chen, Tian, An, Shijie, Zhang, Yuan, Ma, Chongyang, Wang, Huayan, Guo, Xiaoyan, Zheng, Wen

论文摘要

单眼深度估计在3D识别和理解中起着至关重要的作用。现有方法的一个关键局限性在于它们缺乏结构信息开发,从而导致空间布局不准确,不连续的表面和模棱两可的边界。在本文中,我们在三个方面解决了这个问题。首先,为了利用视觉特征的空间关系,我们提出了一个具有空间注意力块的结构感知的神经网络。这些块指导网络对不同特征层的全局结构或本地细节的关注。其次,我们引入了统一点对的全球焦点相对损失,以增强预测中的空间约束,并明确增加对深度不连续区域错误的惩罚,这有助于保留估计结果的清晰度。最后,基于对先前方法的故障案例的分析,我们收集了一个新的硬情况(HC)深度数据集的具有挑战性的场景,例如特殊的照明条件,动态对象和倾斜的相机角度。新的数据集通过知情的学习课程来利用新数据集,该课程将培训示例逐步混合以处理各种数据分布。实验结果表明,就NYUDV2数据集的预测准确性和对看不见的数据集的预测性能而言,我们的方法在很大程度上优于最先进的方法。

Monocular depth estimation plays a crucial role in 3D recognition and understanding. One key limitation of existing approaches lies in their lack of structural information exploitation, which leads to inaccurate spatial layout, discontinuous surface, and ambiguous boundaries. In this paper, we tackle this problem in three aspects. First, to exploit the spatial relationship of visual features, we propose a structure-aware neural network with spatial attention blocks. These blocks guide the network attention to global structures or local details across different feature layers. Second, we introduce a global focal relative loss for uniform point pairs to enhance spatial constraint in the prediction, and explicitly increase the penalty on errors in depth-wise discontinuous regions, which helps preserve the sharpness of estimation results. Finally, based on analysis of failure cases for prior methods, we collect a new Hard Case (HC) Depth dataset of challenging scenes, such as special lighting conditions, dynamic objects, and tilted camera angles. The new dataset is leveraged by an informed learning curriculum that mixes training examples incrementally to handle diverse data distributions. Experimental results show that our method outperforms state-of-the-art approaches by a large margin in terms of both prediction accuracy on NYUDv2 dataset and generalization performance on unseen datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源