论文标题

Mi^2gan:使用共同信息约束的医学图像域适应的生成对抗网络

MI^2GAN: Generative Adversarial Network for Medical Image Domain Adaptation using Mutual Information Constraint

论文作者

Xie, Xinpeng, Chen, Jiawei, Li, Yuexiang, Shen, Linlin, Ma, Kai, Zheng, Yefeng

论文摘要

从多中心那里进行医学图像之间的域转移仍然是社区的一个悬而未决的问题,它降低了深度学习模型的概括性能。合成合理图像的生成对抗网络(GAN)是解决该问题的潜在解决方案之一。但是,现有的基于GAN的方法很容易在图像到图像(I2i)翻译中保存图像对象,从而降低了它们在域适应任务上的实用性。在本文中,我们提出了一个新颖的甘(即mi $^2 $ gan),以在跨域I2i翻译过程中维护图像符号。特别是,我们将内容特征从源和翻译图像中删除域信息,然后最大程度地提高分离的内容特征之间的相互信息,以保留图像对象。提出的Mi $^2 $ gan在两项任务上进行了评估---使用结肠镜图像进行分割,并在眼底图像中对视盘和杯子进行分割。实验结果表明,所提出的Mi $^2 $ gan不仅可以产生优雅的翻译图像,而且还可以显着提高广泛使用的深度学习网络(例如U-net)的泛化性能。

Domain shift between medical images from multicentres is still an open question for the community, which degrades the generalization performance of deep learning models. Generative adversarial network (GAN), which synthesize plausible images, is one of the potential solutions to address the problem. However, the existing GAN-based approaches are prone to fail at preserving image-objects in image-to-image (I2I) translation, which reduces their practicality on domain adaptation tasks. In this paper, we propose a novel GAN (namely MI$^2$GAN) to maintain image-contents during cross-domain I2I translation. Particularly, we disentangle the content features from domain information for both the source and translated images, and then maximize the mutual information between the disentangled content features to preserve the image-objects. The proposed MI$^2$GAN is evaluated on two tasks---polyp segmentation using colonoscopic images and the segmentation of optic disc and cup in fundus images. The experimental results demonstrate that the proposed MI$^2$GAN can not only generate elegant translated images, but also significantly improve the generalization performance of widely used deep learning networks (e.g., U-Net).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源