论文标题
减轻大流行成本的最佳政策
Optimal policies for mitigating pandemic costs
论文作者
论文摘要
已经提出了几种非药物干预措施,以控制COVID-19大流行的扩散。在很大程度上,这些经验解决方案通常与扩展和完整的封锁有关,试图最大程度地降低与死亡率,经济损失和社会因素相关的成本,同时受到诸如有限医院能力之类的约束。在这里,我们提出了一个问题,即如何通过采用最佳控制理论的语言来减轻受限制的大流行成本。这使我们能够确定鉴于疾病动力学的年龄结构化模型,确定社会接触率的性质和动态的自上而下的政策。根据分配给生活和社会经济损失的相对权重,我们看到最佳策略的范围从长期的社会势不可及的范围仅对最脆弱的人来说,到部分封锁,以确保不超越医院,再到与生活和/或社会经济损失的大幅减少相交替的转移。至关重要的是,涉及长时间广泛封锁的常用策略几乎永远不会是最佳选择,因为它们对于重新开放和带来高昂的社会经济成本非常不稳定。使用来自德国和美国可用数据的参数估计值,我们量化了这些策略,并在相关模型参数和初始条件中使用灵敏度分析来确定策略的鲁棒性范围。最后,我们还讨论了自下而上的行为变化如何也可以改变大流行的动态,并展示这与自上而下的控制策略如何同时减轻大流行成本。
Several non-pharmaceutical interventions have been proposed to control the spread of the COVID-19 pandemic. On the large scale, these empirical solutions, often associated with extended and complete lockdowns, attempt to minimize the costs associated with mortality, economic losses and social factors, while being subject to constraints such as finite hospital capacity. Here we pose the question of how to mitigate pandemic costs subject to constraints by adopting the language of optimal control theory. This allows us to determine top-down policies for the nature and dynamics of social contact rates given an age-structured model for the dynamics of the disease. Depending on the relative weights allocated to life and socioeconomic losses, we see that the optimal strategies range from long-term social-distancing only for the most vulnerable, to partial lockdown to ensure not over-running hospitals, to alternating-shifts with significant reduction in life and/or socioeconomic losses. Crucially, commonly used strategies that involve long periods of broad lockdown are almost never optimal, as they are highly unstable to reopening and entail high socioeconomic costs. Using parameter estimates from data available for Germany and the USA, we quantify these policies and use sensitivity analysis in the relevant model parameters and initial conditions to determine the range of robustness of our policies. Finally we also discuss how bottom-up behavioral changes can also change the dynamics of the pandemic and show how this in tandem with top-down control policies can mitigate pandemic costs even more effectively.