论文标题
时间感知图嵌入:时间平滑度和面向任务的方法
Time-aware Graph Embedding: A temporal smoothness and task-oriented approach
论文作者
论文摘要
旨在学习实体和人际关系的低维度表示的知识图嵌入,最近吸引了大量的研究工作。但是,大多数知识图嵌入方法都集中在固定三元组中的结构关系上,同时忽略了时间信息。当前,现有的时间感知图嵌入方法仅着眼于事实的合理性,同时忽略了对事实及其上下文之间的相互作用的时间平滑度,因此可以捕获细粒度的时间关系。这导致嵌入相关应用程序的性能有限。为了解决此问题,本文通过合并时间平滑度提出了一种鲁棒的时间感知图嵌入(RTGE)方法。这里介绍了我们论文的两项主要创新。首先,RTGE整合了时间感知图嵌入的学习过程中的时间平滑度。通过提出的其他平滑因子,RTGE可以保留给定图的结构信息和进化模式。其次,RTGE提供了与时间意识信息相关的一般面向任务的负面抽样策略,该策略进一步提高了所提出的算法的适应能力,并在在各种任务中获得卓越的性能中起着至关重要的作用。在多个基准任务上进行的广泛实验表明,RTGE可以提高实体/关系/时间范围范围预测任务的性能。
Knowledge graph embedding, which aims to learn the low-dimensional representations of entities and relationships, has attracted considerable research efforts recently. However, most knowledge graph embedding methods focus on the structural relationships in fixed triples while ignoring the temporal information. Currently, existing time-aware graph embedding methods only focus on the factual plausibility, while ignoring the temporal smoothness which models the interactions between a fact and its contexts, and thus can capture fine-granularity temporal relationships. This leads to the limited performance of embedding related applications. To solve this problem, this paper presents a Robustly Time-aware Graph Embedding (RTGE) method by incorporating temporal smoothness. Two major innovations of our paper are presented here. At first, RTGE integrates a measure of temporal smoothness in the learning process of the time-aware graph embedding. Via the proposed additional smoothing factor, RTGE can preserve both structural information and evolutionary patterns of a given graph. Secondly, RTGE provides a general task-oriented negative sampling strategy associated with temporally-aware information, which further improves the adaptive ability of the proposed algorithm and plays an essential role in obtaining superior performance in various tasks. Extensive experiments conducted on multiple benchmark tasks show that RTGE can increase performance in entity/relationship/temporal scoping prediction tasks.