论文标题

通过利用多模式数据进行视网膜疾病诊断,自我监督的特征学习

Self-supervised Feature Learning via Exploiting Multi-modal Data for Retinal Disease Diagnosis

论文作者

Li, Xiaomeng, Jia, Mengyu, Islam, Md Tauhidul, Yu, Lequan, Xing, Lei

论文摘要

从眼底图像中自动诊断各种视网膜疾病对于支持临床决策很重要。但是,由于需要大量的人类通知数据,因此开发这种自动解决方案是具有挑战性的。最近,无监督/自我监督的特征学习技术受到了很多关注,因为它们不需要大量注释。通过单个成像模式分析当前的大多数自我监督方法,目前尚无方法利用多模式图像以获得更好的结果。考虑到各种玻璃体视网膜疾病的诊断可以从另一种成像方式中受益匪浅,例如FFA,本文通过有效利用多模式数据来进行视网膜疾病诊断来提出一种新型的自我监督特征学习方法。为了实现这一目标,我们首先合成相应的FFA模式,然后制定基于患者特征的SoftMax嵌入目标。我们的目标学习模态不变的功能和患者相似性功能。通过这种机制,神经网络捕获了跨不同模式的语义共享信息以及患者之间明显的视觉相似性。我们在两个公共基准数据集上评估我们的方法,以进行视网膜疾病诊断。实验结果表明,我们的方法显然优于其他自我监督的特征学习方法,并且与受监督的基线相媲美。

The automatic diagnosis of various retinal diseases from fundus images is important to support clinical decision-making. However, developing such automatic solutions is challenging due to the requirement of a large amount of human-annotated data. Recently, unsupervised/self-supervised feature learning techniques receive a lot of attention, as they do not need massive annotations. Most of the current self-supervised methods are analyzed with single imaging modality and there is no method currently utilize multi-modal images for better results. Considering that the diagnostics of various vitreoretinal diseases can greatly benefit from another imaging modality, e.g., FFA, this paper presents a novel self-supervised feature learning method by effectively exploiting multi-modal data for retinal disease diagnosis. To achieve this, we first synthesize the corresponding FFA modality and then formulate a patient feature-based softmax embedding objective. Our objective learns both modality-invariant features and patient-similarity features. Through this mechanism, the neural network captures the semantically shared information across different modalities and the apparent visual similarity between patients. We evaluate our method on two public benchmark datasets for retinal disease diagnosis. The experimental results demonstrate that our method clearly outperforms other self-supervised feature learning methods and is comparable to the supervised baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源