论文标题
存在对称吸收状态的临界现象:具有可调参数的微观自旋模型
Critical phenomena in presence of symmetric absorbing states: a microscopic spin model with tunable parameters
论文作者
论文摘要
Langevin对具有两个对称吸收状态的系统的描述产生了一个相图,具有三个不同阶段(无序,有序,有序和活跃,吸收)的相图,这些阶段被属于三种不同普遍性类别的临界线(广义选民,ISING,ISING和PIRICATION PERCOLATION)隔开。在本文中,我们提出了一个具有两个对称吸收状态的微观自旋模型,该模型具有可以连续变化的模型参数。我们的结果是通过广泛的数值模拟获得的,表明我们的二维微观自旋模型遇到了Langevin描述的所有特征。因此,ISING和方向渗透线在参数空间中与经典选民模型不同的参数空间中的广义选民关键线合并。大量不同的数量用于确定订单序列的通用类别和吸收相变的通用类别。对属于广义选民普遍性类别的关键点的时间相关数量的调查显示,比文献中先前讨论的要复杂得多。
The Langevin description of systems with two symmetric absorbing states yields a phase diagram with three different phases (disordered and active, ordered and active, absorbing) separated by critical lines belonging to three different universality classes (generalized voter, Ising, and directed percolation). In this paper we present a microscopic spin model with two symmetric absorbing states that has the property that the model parameters can be varied in a continuous way. Our results, obtained through extensive numerical simulations, indicate that all features of the Langevin description are encountered for our two-dimensionsal microscopic spin model. Thus the Ising and direction percolation lines merge into a generalized voter critical line at a point in parameter space that is not identical to the classical voter model. A vast range of different quantities are used to determine the universality classes of the order-disorder and absorbing phase transitions. The investigation of time-dependent quantities at a critical point belonging to the generalized voter universality class reveals a more complicated picture than previously discussed in the literature.