论文标题

块状:红色巨型进化状态的时间域分类

Clumpiness: Time-domain classification of red-giant evolutionary states

论文作者

Kuszlewicz, James S., Hekker, Saskia, Bell, Keaton J.

论文摘要

先前的太空货物(例如Corot和$ \ Mathit {Kepler} $)提供的长而高质量的时间序列数据使得从其单个振荡模式下,恒星是在惰性氦气核心还是在惰性氦核心燃烧中燃烧颗粒,是氢壳燃烧是否燃烧的恒星是可以得出红色巨星的进化状态的。我们利用$ \ Mathit {Kepler} $任务中的数据来开发一种工具,以对K2,TESS和未来Plato Mission的当前时代观察到大量星星的进化状态进行分类。这些任务为进化状态分类提供了新的挑战,鉴于观察到大量恒星以及较短的数据持续时间。我们提出了一种新方法,即$ \ mathtt {块} $,基于使用时间序列的“摘要统计”的监督分类方案,并结合了盖亚任务的距离信息来预测进化状态。将其应用于Apokasc目录中的红色巨人,我们在整个4年的$ \ Mathit {Kepler} $数据中获得了〜91%的分类精度,对于那些仅是氢壳燃烧或氦核燃烧的恒星。我们还将该方法应用于较短的$ \ mathit {kepler} $数据集,模仿Corot,K2和Tess,即使在27天的时间序列中,精度也达到了91%。这项工作为大量相对短时的数据铺平了途径,并具有一些精心设计的功能。

Long, high-quality time-series data provided by previous space-missions such as CoRoT and $\mathit{Kepler}$ have made it possible to derive the evolutionary state of red-giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core or helium-core burning, from their individual oscillation modes. We utilise data from the $\mathit{Kepler}$ mission to develop a tool to classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS and for the future PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars being observed and the shorter observing duration of the data. We propose a new method, $\mathtt{Clumpiness}$, based upon a supervised classification scheme that uses "summary statistics" of the time series, combined with distance information from the Gaia mission to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy of ~91% for the full 4 years of $\mathit{Kepler}$ data, for those stars that are either only hydrogen-shell burning or also helium-core burning. We also applied the method to shorter $\mathit{Kepler}$ datasets, mimicking CoRoT, K2 and TESS achieving an accuracy >91% even for the 27 day time series. This work paves the way towards fast, reliable classification of vast amounts of relatively short-time-span data with a few, well-engineered features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源