论文标题
几乎通用的五角大楼数量
Almost universal ternary sums of pentagonal numbers
论文作者
论文摘要
对于每个整数$ x $,$ x $ th的广义五角形号码用$ p_5(x)=(3x^2-x)/2 $表示。给定奇数的正整数$ a,b,c $和非阴性整数$ r,s $,我们采用三元二次形式的理论来确定何时sum $ $ ap_5(x)+2^rbp_5(y)+2^scp_5(z)$代表了几乎一定的积极整数。
For each integer $x$, the $x$-th generalized pentagonal number is denoted by $P_5(x)=(3x^2-x)/2$. Given odd positive integers $a,b,c$ and non-negative integers $r,s$, we employ the theory of ternary quadratic forms to determine when the sum $aP_5(x)+2^rbP_5(y)+2^scP_5(z)$ represents all but finitely many positive integers.