论文标题
强大的层次图分类,并注意
Robust Hierarchical Graph Classification with Subgraph Attention
论文作者
论文摘要
图形神经网络在机器学习社区中引起了图表表示和分类的极大关注。应用于节点附近的注意机制可改善图神经网络的性能。通常,它有助于识别一个邻居节点,该节点起着更重要的作用来确定所考虑的节点的标签。但是在现实世界中,一个特定的节点子集在一起,但子集中的单个对并不重要,对于确定图的标签可能很重要。为了解决这个问题,我们介绍了图表的子图的概念。另一方面,在最近的文献中已证明层次图池在最近的文献中很有希望。但是,由于现实世界图的嘈杂层次结构,并非图形的所有层次结构在图形分类中起着相同的作用。为此,我们提出了一种称为subgattpool的图形分类算法,该算法共同了解了子图的关注,并采用了两种不同类型的层次重点机制,以在层次结构中找到重要的节点以及图中各个层次结构的重要性。具有不同类型的图形分类算法的实验评估表明,Subgattpool能够改善最新的技术或在多个公开可用的图形分类数据集上保持竞争力。我们对合成和现实世界图数据集进行了进一步的实验,以证明Subgattpool不同组件的有用性并显示其在其他下游任务上的一致性。
Graph neural networks get significant attention for graph representation and classification in machine learning community. Attention mechanism applied on the neighborhood of a node improves the performance of graph neural networks. Typically, it helps to identify a neighbor node which plays more important role to determine the label of the node under consideration. But in real world scenarios, a particular subset of nodes together, but not the individual pairs in the subset, may be important to determine the label of the graph. To address this problem, we introduce the concept of subgraph attention for graphs. On the other hand, hierarchical graph pooling has been shown to be promising in recent literature. But due to noisy hierarchical structure of real world graphs, not all the hierarchies of a graph play equal role for graph classification. Towards this end, we propose a graph classification algorithm called SubGattPool which jointly learns the subgraph attention and employs two different types of hierarchical attention mechanisms to find the important nodes in a hierarchy and the importance of individual hierarchies in a graph. Experimental evaluation with different types of graph classification algorithms shows that SubGattPool is able to improve the state-of-the-art or remains competitive on multiple publicly available graph classification datasets. We conduct further experiments on both synthetic and real world graph datasets to justify the usefulness of different components of SubGattPool and to show its consistent performance on other downstream tasks.