论文标题
2D半导体CRSBR中的磁顺序和对称性
Magnetic Order and Symmetry in the 2D Semiconductor CrSBr
论文作者
论文摘要
二维(2D)磁铁的最新发现为低维磁力4和磁接近效应的实验探索提供了独特的机会,以及开发新型磁电磁,磁盘和自旋设备的开发。这些进步要求具有不同磁性结构的2D材料以及其磁对称性的有效探针,这是理解内磁磁性和层间磁耦合的关键。在这里,我们采用第二次谐波生成(SHG),这是一种对对称性破裂敏感的技术,以探测新的2D磁性半导体CRSBR的磁性结构。我们发现,CRSBR单层在146 K以下是铁磁序,这是通过在中心对称2D结构中发现巨型磁性偶极shg效应来实现的。在多层人士中,铁磁单层是抗铁磁性耦合的,随着néel温度的增加,随着层数的减少,néel温度显着升高。 CRSBR的磁性结构包含旋转与矩形单位电池的平面内对齐,与原型2D六角形磁铁CRI3和CR2GE2TE6与平面外矩具有明显不同。此外,我们的SHG分析表明,铁磁单层和抗铁磁双层的顺序参数分别是磁性偶极子和磁环矩。这些发现将CRSBR建立为令人兴奋的2D磁性半导体和SHG,作为探测2D磁对称性的强大工具,打开了磁性和激子/电子/电子特性之间耦合以及在广泛应用中的磁环动力之间的耦合。
The recent discovery of two-dimensional (2D) magnets offers unique opportunities for the experimental exploration of low-dimensional magnetism4 and the magnetic proximity effects, and for the development of novel magnetoelectric, magnetooptic and spintronic devices. These advancements call for 2D materials with diverse magnetic structures as well as effective probes for their magnetic symmetries, which is key to understanding intralayer magnetic order and interlayer magnetic coupling. Here we apply second harmonic generation (SHG), a technique acutely sensitive to symmetry breaking, to probe the magnetic structure of a new 2D magnetic semiconductor, CrSBr. We find that CrSBr monolayers are ferromagnetically ordered below 146 K, an observation enabled by the discovery of a giant magnetic dipole SHG effect in the centrosymmetric 2D structure. In multilayers, the ferromagnetic monolayers are coupled antiferromagnetically, with the Néel temperature notably increasing with decreasing layer number. The magnetic structure of CrSBr, comprising spins co-aligned in-plane with rectangular unit cell, differs markedly from the prototypical 2D hexagonal magnets CrI3 and Cr2Ge2Te6 with out-of-plane moments. Moreover, our SHG analysis suggests that the order parameters of the ferromagnetic monolayer and the antiferromagnetic bilayer are the magnetic dipole and the magnetic toroidal moments, respectively. These findings establish CrSBr as an exciting 2D magnetic semiconductor and SHG as a powerful tool to probe 2D magnetic symmetry, opening the door to the exploration of coupling between magnetic order and excitonic/electronic properties, as well as the magnetic toroidal moment, in a broad range of applications.