论文标题

差异性及其本地正常形式的完全可整合性

Complete integrability of diffeomorphisms and their local normal forms

论文作者

Jiang, Kai, Stolovitch, Laurent

论文摘要

在本文中,我们考虑了在固定点(例如,$ \ mathbb {k}^n $($ \ Mathbb {k} = \ Mathbb {c} $或$ \ mathbb {r} $)的固定点(例如$ \ mathbb {k}^n $($ \ mathbb {k}^n $的起源))的正常形式问题。我们定义了这样一个家庭的综合性概念。我们提供足够的条件,以确保如果初始差异性是分析性的(分​​别平滑),则可以通过分析(分析平滑)转化将这种可集成的家族转化为正常形式。

In this paper, we consider the normal form problem of a commutative family of germs of diffeomorphisms at a fixed point, say the origin, of $\mathbb{K}^n$ ($\mathbb{K}=\mathbb{C}$ or $\mathbb{R}$). We define a notion of integrability of such a family. We give sufficient conditions which ensure that such an integrable family can be transformed into a normal form by an analytic (resp. a smooth) transformation if the initial diffeomorphisms are analytic (resp. smooth).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源