论文标题
关于$ r^2 $重力的多面体流体球的线性稳定性
On the linear stability of polytropic fluid spheres in $R^2$ gravity
论文作者
论文摘要
在$ r^2 $重力范围内,我们研究了由多粒子流体支持的强烈吸引力对称构型的线性稳定性。所有计算均在约旦框架中进行。证明,与一般相对论一样,从稳定系统到不稳定系统的过渡发生在流体的曲线质量中心密度的最大值。
Within $R^2$ gravity, we study the linear stability of strongly gravitating spherically symmetric configurations supported by a polytropic fluid. All calculations are carried out in the Jordan frame. It is demonstrated that, as in general relativity, the transition from stable to unstable systems occurs at the maximum of the curve mass-central density of the fluid.