论文标题

非马尔科夫的政策,以减少机器人箱拾取的顺序失败

Non-Markov Policies to Reduce Sequential Failures in Robot Bin Picking

论文作者

Sanders, Kate, Danielczuk, Michael, Mahler, Jeffrey, Tanwani, Ajay, Goldberg, Ken

论文摘要

使用深度学习的新一代自动垃圾箱采摘系统正在发展,以支持对电子商务的需求不断增长。为了适应各种产品,许多自动化系统包括多种抓手类型和/或工具更换器。但是,对于某些对象,顺序掌握失败是常见的:当计算的掌握无法抬起和卸下对象时,垃圾箱通常会保持不变;由于传感器输入是一致的,因此系统一遍又一遍地重新掌握相同的掌握,从而显着减少平均每小时成功的选择(MPPH)。基于对顺序失败的经验研究,我们表征了一类“顺序失败对象”(SFO) - 对象容易基于新的分类法进行顺序失败。然后,我们提出了三个非马尔科夫挑选策略,这些策略结合了过去失败的记忆,以修改后续动作。 SFO模型和EGAD数据集的仿真实验表明,根据顺序失败率和MPPH,非马科夫策略显着优于Markov策略。在12个SFO的50个堆的物理实验中,最有效的非马尔科夫政策比DEX-NET马尔可夫政策增加了107%。

A new generation of automated bin picking systems using deep learning is evolving to support increasing demand for e-commerce. To accommodate a wide variety of products, many automated systems include multiple gripper types and/or tool changers. However, for some objects, sequential grasp failures are common: when a computed grasp fails to lift and remove the object, the bin is often left unchanged; as the sensor input is consistent, the system retries the same grasp over and over, resulting in a significant reduction in mean successful picks per hour (MPPH). Based on an empirical study of sequential failures, we characterize a class of "sequential failure objects" (SFOs) -- objects prone to sequential failures based on a novel taxonomy. We then propose three non-Markov picking policies that incorporate memory of past failures to modify subsequent actions. Simulation experiments on SFO models and the EGAD dataset suggest that the non-Markov policies significantly outperform the Markov policy in terms of the sequential failure rate and MPPH. In physical experiments on 50 heaps of 12 SFOs the most effective Non-Markov policy increased MPPH over the Dex-Net Markov policy by 107%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源