论文标题
评估对对流JFNK方法的对称性的评估
Assessment of a symmetry preserving JFNK method for atmospheric convection
论文作者
论文摘要
基于线性脱钩的半平移或完全无限技术的技术,通常通过预先调节的Krylov方法求解线性系统的数值模拟,而不保留对流操作员的偏斜对称。我们建议以完全尺寸的方式进行大气模拟,以使差异操作员保留差异对称性和差速器的紧密非线性耦合。我们证明,具有对称性的无雅可比亚牛顿 - 克里洛夫(JFNK)方法模仿对流传输与湍流耗散之间的平衡。我们将小波方法作为一种有效的对称性保留离散化技术。已经使用两个穿透性对流的基准模拟来研究了用于求解非遗传大气流程方程的对称性JFNK方法 - a)在中性分层且稳定分层的环境中升高的干热以及b)城市热岛循环的效果930 $ wm $^{ - 2} $。结果表明,涡流粘度模型提供了亚网格尺度模式的必要耗散,而对称性的JFNK方法则可以在令人满意的水平上保护质量和能量。比较热岛循环的实验实验和电势温度的现场测量结果的比较也表明,当前具有对称对称性的JFNK框架的建模准确性。
Numerical simulations of nonhydrostatic atmospheric flow, based on linearly decoupled semi-implicit or fully-implicit techniques, usually solve linear systems by a pre-conditioned Krylov method without preserving the skew-symmetry of convective operators. We propose to perform atmospheric simulations in such a fully-implicit manner that the difference operators preserve both the skew-symmetry and the tightly nonlinear coupling of the differential operators. We demonstrate that a symmetry-preserving Jacobian-free Newton-Krylov~(JFNK) method mimics a balance between convective transport and turbulence dissipation. We present a wavelet method as an effective symmetry preserving discretization technique. The symmetry-preserving JFNK method for solving equations of nonhydrostatic atmospheric flows has been examined using two benchmark simulations of penetrative convection -- a) dry thermals rising in a neutrally stratified and stably stratified environment, and b) urban heat island circulations for effects of the surface heat flux $H_0$ varying in the range of $25 \le H_0 \le 930$Wm$^{-2}$.The results show that an eddy viscosity model provides the necessary dissipation of the subgrid-scale modes, while the symmetry-preserving JFNK method provides the conservation of mass and energy at a satisfactory level. Comparisons of the results from a laboratory experiment of heat island circulation and a field measurement of potential temperature also suggest the modelling accuracy of the present symmetry-preserving JFNK framework.