论文标题

在某些具有强相关障碍的图表上定位

Localisation on certain graphs with strongly correlated disorder

论文作者

Roy, Sthitadhi, Logan, David E.

论文摘要

相互作用的量子系统中的多体定位可以作为基础的Fock空间图上的无序跳跃问题。有效的Fock空间障碍的一个关键特征是,Fock空间位点的能量密切相关 - 对于图形上有限距离隔开的位点,最大程度地相关。由此激励,并更加从根本地理解这种相关性的效果,我们研究了安德森在凯利树上的定位和随机的常规图,并具有最大相关性的疾病。由于这种相关性抑制了疾病潜力中的短距离波动,因此可能天真地假设它们分散了定位。但是,我们发现存在安德森过渡,实际上,本地化在某种意义上更强大,因为与$ \ sqrt {k} $相比,与$ k \ ln k $在不相关的情况下形成鲜明对比的是,临界障碍与图形连接$ k $为$ \ sqrt {k} $。这种缩放被认为与多体定位的稳定性密切相关。我们的分析集中在当地繁殖者的确切递归表述以及自洽的平均场理论上。结果使用精确的对角化来证实。

Many-body localisation in interacting quantum systems can be cast as a disordered hopping problem on the underlying Fock-space graph. A crucial feature of the effective Fock-space disorder is that the Fock-space site energies are strongly correlated -- maximally so for sites separated by a finite distance on the graph. Motivated by this, and to understand the effect of such correlations more fundamentally, we study Anderson localisation on Cayley trees and random regular graphs, with maximally correlated disorder. Since such correlations suppress short distance fluctuations in the disorder potential, one might naively suppose they disfavour localisation. We find however that there exists an Anderson transition, and indeed that localisation is more robust in the sense that the critical disorder scales with graph connectivity $K$ as $\sqrt{K}$, in marked contrast to $K\ln K$ in the uncorrelated case. This scaling is argued to be intimately connected to the stability of many-body localisation. Our analysis centres on an exact recursive formulation for the local propagators as well as a self-consistent mean-field theory; with results corroborated using exact diagonalisation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源