论文标题

基于加性弹性校正率的乘法有限应变晶体可塑性公式:理论和数值实施

A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: Theory and numerical implementation

论文作者

Zhang, Meijuan, Nguyen, K., Segurado, Javier, Montans, Francisco J.

论文摘要

连续可塑性模型的目的是有效预测超出其弹性限制的结构的行为。多尺度材料科学模型(其中包括晶体可塑性模型)的目的是了解材料行为并设计给定目标的材料。当前成功的连续性超塑塑料模型基于晶体可塑性的乘法分解,但是两种方法的计算框架上存在显着差异,因此比较并非直接。 在以前的著作中,我们提出了一种乘法连续性弹性性的理论,该理论解决了许多长期存在的问题,并保留了无限无限的Wilkins算法的吸引人的结构。在这项工作中,我们将理论扩展到晶体可塑性。我们表明,新的晶体可塑性配方是平行的,可与连续可塑性相媲美,保留了框架的吸引力:(1)运动学的简单性达到了与无限框架的平行性; (2)极大的弹性菌株和无限制类型的超弹性行为的可能性; (3)连续理论的立即简单的向后算法实施避免了算法动机的指数映射,但可以保留相应的流动; (4)配方中缺乏曼德尔型应力; (5)由于使用弹性校正率,由于使用流量规则而导致的客观性和通过施工较弱。我们将晶体可塑性公式的结果与基于二次应变的Kalidindi和Anand的经典配方进行了比较,以及塑性变形梯度的指数映射更新。

The purpose of continuum plasticity models is to efficiently predict the behavior of structures beyond their elastic limits. The purpose of multiscale materials science models, among them crystal plasticity models, is to understand the material behavior and design the material for a given target. The current successful continuum hyperelastoplastic models are based in the multiplicative decomposition from crystal plasticity, but significant differences in the computational frameworks of both approaches remain, making comparisons not straightforward. In previous works we have presented a theory for multiplicative continuum elastoplasticity which solved many long-standing issues, preserving the appealing structure of additive infinitesimal Wilkins algorithms. In this work we extend the theory to crystal plasticity. We show that the new formulation for crystal plasticity is parallel and comparable to continuum plasticity, preserving the attractive aspects of the framework: (1) simplicity of the kinematics reaching a parallelism with the infinitesimal framework; (2) possibility of very large elastic strains and unrestricted type of hyperelastic behavior; (3) immediate plain backward-Euler algorithmic implementation of the continuum theory avoiding algorithmically motivated exponential mappings, yet preserving isochoric flow; (4) absence of Mandel-type stresses in the formulation; (5) objectiveness and weak-invariance by construction due to the use of flow rules in terms of elastic corrector rates. We compare the results of our crystal plasticity formulation with the classical formulation from Kalidindi and Anand based on quadratic strains and an exponential mapping update of the plastic deformation gradient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源