论文标题
COVID-19的推断巴西医院数据的流行病学分布
Inference of COVID-19 epidemiological distributions from Brazilian hospital data
论文作者
论文摘要
了解Covid-19-19的流行病学分布,例如从患者入院到死亡的时间,与有效的初级和二级护理计划直接相关,此外,大流行的数学建模通常与大流行的数学建模有关。我们确定使用大型数据集($ n = 21 {,} 000-157 {,} 000 $)从巴西Sistema sistema deinformaçãodeVigilânciaepidemiológicada Gripe数据库中确定与COVID-19的患者的流行病学分布。具有部分合并的联合贝叶斯亚国家模型同时描述了巴西的26个州和一个联邦区,并显示出症状到卫星时间的平均值显着差异,在不同国家的11.2-17.8天之间,巴西的平均值为15.2天。我们发现有力的证据支持特定的概率密度函数选择:例如,伽马分布可最适合发作至死亡,并为发作至医院的广义纳入正态提供。我们的结果表明,流行病学分布具有相当大的地理差异,并在低和中等收入的环境中提供了这些分布的首次估计。在次国国家层面上,发现共同19的结果时机与贫困,剥夺和隔离水平相关,并且在平均年龄,财富和城市化方面观察到较弱的相关性。
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset ($N=21{,}000-157{,}000$) from the Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.