论文标题

在自动机半群和组的轨道上

On the Orbits of Automaton Semigroups and Groups

论文作者

D'Angeli, Daniele, Francoeur, Dominik, Rodaro, Emanuele, Wächter, Jan Philipp

论文摘要

我们研究自动机和组的自动机半群和组的轨道,以获取算法和结构性结果,均用于一般自动机,以及一些特殊的子类别。首先,我们证明自动机组的有限问题的更通用版本是不可确定的。这个问题等同于由完整和可逆自动机产生的自动机半群中左主理想的有限问题。然后,我们查看具有有限轨道的$ω$ - 单词(即正确的无限单词)。我们表明,每个具有有限轨道的自动机产生$ω$ - 词,最终都会产生一个周期性的,但总体上并不是周期性的。在算法方面,我们观察到,不可能确定给定的周期性$ω$ - 单词是否具有无限的轨道,并且我们无法检查给定的可逆和完整的自动机是否承认有限轨道的$ω$ - 在重复可转化的情况下,对自动元素的emotomatens semigroups的互惠问题,互惠问题。最后,我们查看由可逆但不是双可逆的自动机产生的自动机组,并表明许多单词在这种自动机的作用下具有无限的轨道。

We investigate the orbits of automaton semigroups and groups to obtain algorithmic and structural results, both for general automata but also for some special subclasses. First, we show that a more general version of the finiteness problem for automaton groups is undecidable. This problem is equivalent to the finiteness problem for left principal ideals in automaton semigroups generated by complete and reversible automata. Then, we look at $ω$-word (i.e. right infinite words) with a finite orbit. We show that every automaton yielding an $ω$-word with a finite orbit already yields an ultimately periodic one, which is not periodic in general, however. On the algorithmic side, we observe that it is not possible to decide whether a given periodic $ω$-word has an infinite orbit and that we cannot check whether a given reversible and complete automaton admits an $ω$-word with a finite orbit, a reciprocal problem to the finiteness problem for automaton semigroups in the reversible case. Finally, we look at automaton groups generated by reversible but not bi-reversible automata and show that many words have infinite orbits under the action of such automata.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源