论文标题
旨在将真正的随机数生成在相干的光学收发器中
Towards Integrating True Random Number Generation in Coherent Optical Transceivers
论文作者
论文摘要
量子通信功能的集成通常需要专用的光电组件,这些组件与电信系统的技术路线图无法良好。我们研究了商业相干收发器子系统在经典数据传输旁边支持量子随机数生成的能力,并证明了如何将基于真空波动的量子熵源可能被可能转换为真正的随机数生成器,以实现此目的。我们讨论了两个可能的实现,以接收器和以发射器为中心的体系结构为基础。在第一个方案中,利用了相干内膜内接收器中平衡的同源宽带检测,以在90度杂种的输入下测量真空状态。在我们的原则证明中,在超过11 GHz的宽带宽度上获得了光学噪声和电噪声之间> 2 dB的清除率。在第二个方案中,我们提出并评估了为了同样的目的,并评估了极化 - 多形的数字/正相调制器的光电二极管的重复使用。对于10 GBAUD极化 - 多形的正交相移键数据传输,证明了时间间隔的随机数生成。详细模型的可用性将允许计算可提取的熵,因此,我们使用两次宇宙强的提取器显示了两个原理证明实验的随机提取。
The integration of quantum communication functions often requires dedicated opto-electronic components that do not bode well with the technology roadmaps of telecom systems. We investigate the capability of commercial coherent transceiver sub-systems to support quantum random number generation next to classical data transmission, and demonstrate how the quantum entropy source based on vacuum fluctuations can be potentially converted into a true random number generator for this purpose. We discuss two possible implementations, building on a receiver- and a transmitter-centric architecture. In the first scheme, balanced homodyne broadband detection in a coherent intradyne receiver is exploited to measure the vacuum state at the input of a 90-degree hybrid. In our proof-of-principle demonstration, a clearance of >2 dB between optical and electrical noise is obtained over a wide bandwidth of more than 11 GHz. In the second scheme, we propose and evaluate the re-use of monitoring photodiodes of a polarization-multiplexed inphase/quadrature modulator for the same purpose. Time-interleaved random number generation is demonstrated for 10 Gbaud polarization-multiplexed quadrature phase shift keyed data transmission. The availability of detailed models will allow to calculate the extractable entropy and we accordingly show randomness extraction for our two proof-of-principle experiments, employing a two-universal strong extractor.