论文标题

加权莫雷空间上凯奇型积分换向器的界限和紧凑性

Boundedness And Compactness Of Cauchy-Type Integral Commutator On Weighted Morrey Spaces

论文作者

Gong, Ruming, Vempati, Manasa N., Wu, Qingyan, Xie, Peizhu

论文摘要

In this paper we study the boundedness and compactness characterizations of the commutator of Cauchy type integrals $\mathcal C$ on a bounded strongly pseudoconvex domain $D$ in $C^n$ with boundary $bD$ satisfying the minimum regularity condition $C^{2}$ based on the recent result of Lanzani-Stein and Duong-Lacey-Li-Wick-Wu.我们指出,在此设置中,Cauchy类型的$ \ Mathcal C $是必需部分$ \ Mathcal {C}^\ Sharp $的总和,这是Calderón-Zygmund操作员,其余的$ \ Mathcal R $不再是ACalderón-calderón-Zygmund Operator。我们表明,换向器$ [B,\ Mathcal c] $在加权的Morrey空间上$ l_ {V}^{p,κ}(bd)$($ v \ in A_p,1 <p <\ infty $),并且仅当$ b $在$ bd $ bmo space上时,只有$ bd $。此外,换向器$ [b,\ mathcal c] $在加权的莫雷空间上是紧凑的$ l_ {v}^{p,κ}(bd)$($ v \ in a_p,1 <p <\ infty $),并且仅当$ b $在$ bd $上均为$ bd $。

In this paper we study the boundedness and compactness characterizations of the commutator of Cauchy type integrals $\mathcal C$ on a bounded strongly pseudoconvex domain $D$ in $C^n$ with boundary $bD$ satisfying the minimum regularity condition $C^{2}$ based on the recent result of Lanzani-Stein and Duong-Lacey-Li-Wick-Wu. We point out that in this setting the Cauchy type integral $\mathcal C$ is the sum of the essential part $\mathcal{C}^\sharp$ which is a Calderón-Zygmund operator and a remainder $\mathcal R$ which is no longer a Calderón-Zygmund operator. We show that the commutator $[b, \mathcal C]$ is bounded on weighted Morrey space $L_{v}^{p,κ}(bD)$ ($v\in A_p, 1<p<\infty$) if and only if $b$ is in the BMO space on $bD$. Moreover, the commutator $[b, \mathcal C]$ is compact on weighted Morrey space $L_{v}^{p,κ}(bD)$ ($v\in A_p, 1<p<\infty$) if and only if $b$ is in the VMO space on $bD$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源