论文标题
仅在爱因斯坦 - 加斯 - 邦网理论中旋转更高维的黑洞
Simply rotating higher dimensional black holes in Einstein-Gauss-Bonnet theory
论文作者
论文摘要
在旋转参数$ a $方面,使用扰动扩展,我们在$ d $ d $维的爱因斯坦 - 高斯 - 高斯 - 邦网理论中构建了轴对称和渐近平坦的黑洞公制。在五维时空中,我们找到了田间方程的两个解,描述了渐近平坦的黑洞,尽管其中只有一个在质量中是扰动的,也就是说,当黑孔质量变为零时。对于任何$ d $,我们获得了至$ o(αA^3)$的扰动黑洞解决方案,其中$α$是高斯 - 骨网耦合,而$ d = 5 $ solution the Mass的$ d = 5 $解决方案以分析形式找到,直至$ O O(αA^7)$。为了检查$ a $中扩展的收敛性,我们分析了该时空中光子轨道的特征,并计算光子球体的光子轨道和半径。
Using perturbative expansion in terms of powers of the rotation parameter $a$ we construct the axisymmetric and asymptotically flat black-hole metric in the $D$-dimensional Einstein-Gauss-Bonnet theory. In five-dimensional spacetime we find two solutions to the field equations, describing the asymptotically flat black holes, though only one of them is perturbative in mass, that is, goes over into the Minkowski spacetime when the black-hole mass goes to zero. We obtain the perturbative black-hole solution up to the order $O(αa^3)$ for any $D$, where $α$ is the Gauss-Bonnet coupling, while the $D=5$ solution which is nonperturbative in mass is found in analytic form up to the order $O(αa^7)$. In order to check the convergence of the expansion in $a$ we analyze characteristics of photon orbits in this spacetime and compute frequencies of the photon orbits and radius of the photon sphere.