论文标题

建模随机微观交通行为:物理正规化的高斯工艺方法

Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized Gaussian Process Approach

论文作者

Yuan, Yun, Wang, Qinzheng, Yang, Xianfeng Terry

论文摘要

在微观层面进行建模随机交通行为,例如跟踪和改变车道,是了解交通流中各个车辆之间相互作用的至关重要的任务。利用最近开发的名为物理正规化高斯过程(PRGP)的理论,本研究提出了一个随机微观交通模型,可以捕获现实世界中的随机性并测量误差。来自经典汽车跟随模型的物理知识以阴影高斯工艺(GP)的形式转换为用于提高建模准确性的多元PRGP的形式。更具体地说,开发了贝叶斯推论算法来估计GPS的平均值和内核,并制定了增强的潜在力模型将物理知识编码为随机过程。同样,基于后正规化推理框架,开发了有效的随机优化算法,以最大程度地提高系统可能性的证据。为了评估所提出的模型的性能,本研究对NGSIM数据集的现实世界轨迹进行了经验研究。由于所提出的框架的一个独特功能是使用一个单个模型捕获循环和改变车道的行为的能力,因此使用两个分离的数据集进行了数值测试,因此一个包含改变车道的操作,而另一个则没有。结果表明,所提出的方法在估计精度上优于先前的影响力方法。

Modeling stochastic traffic behaviors at the microscopic level, such as car-following and lane-changing, is a crucial task to understand the interactions between individual vehicles in traffic streams. Leveraging a recently developed theory named physics regularized Gaussian process (PRGP), this study presents a stochastic microscopic traffic model that can capture the randomness and measure errors in the real world. Physical knowledge from classical car-following models is converted as physics regularizers, in the form of shadow Gaussian process (GP), of a multivariate PRGP for improving the modeling accuracy. More specifically, a Bayesian inference algorithm is developed to estimate the mean and kernel of GPs, and an enhanced latent force model is formulated to encode physical knowledge into stochastic processes. Also, based on the posterior regularization inference framework, an efficient stochastic optimization algorithm is developed to maximize the evidence lower-bound of the system likelihood. To evaluate the performance of the proposed models, this study conducts empirical studies on real-world vehicle trajectories from the NGSIM dataset. Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets, one contains lane-changing maneuvers and the other doesn't. The results show the proposed method outperforms the previous influential methods in estimation precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源