论文标题
PSLG的四边形网格
Quadrilateral meshes for PSLGs
论文作者
论文摘要
我们证明,每个带有$ n $ VERTICES的平面直线图都具有符合$ O(n^2)$元素的四边形网格,所有角度$ \ leq 120^\ circ $和所有新的角度$ \ geq 60^\ circ $。复杂性和角度边界都很清晰。此外,除$ o(n)$外,所有角度的$都可以以较小的间隔(例如$ [89^\ circ,91^\ circ] $进行。
We prove that every planar straight line graph with $n$ vertices has a conforming quadrilateral mesh with $O(n^2)$ elements, all angles $\leq 120^\circ$ and all new angles $\geq 60^\circ$. Both the complexity and the angle bounds are sharp. Moreover, all but $O(n)$ of the angles may be taken in a smaller interval, say $[89^\circ, 91^\circ]$.