论文标题

3D计算机断层扫描数据上的卷积神经网络的头球测度标志性回归

Cephalometric Landmark Regression with Convolutional Neural Networks on 3D Computed Tomography Data

论文作者

Lachinov, Dmitry, Getmanskaya, Alexandra, Turlapov, Vadim

论文摘要

在本文中,我们解决了自动三维头形测量学分析的问题。对横向X光片进行的头部计量分析并未完全利用由于投影到侧面上的3D对象的结构。随着三维成像技术(例如CT)的发展,已经提出了几种扩展到3D情况的分析方法。基于这些方法的分析对于旋转和翻译是不变的,并且可以描述难度的头骨变形,其中2D头皮计算没有用。在本文中,我们概述了现有的头标的地标回归方法。此外,我们对基于3D卷积神经网络(CNN)基于关键点回归的方法进行了一系列实验:使用CNN直接回归,热图回归和软核能回归。我们首次广泛评估了所描述的方法,并证明了它们在估算法兰克福水平和头部计量点位置的有效性,该位置是严重颅骨变形的患者。我们证明,热图和软马克斯回归模型为医疗应用提供了足够的回归误差(小于4 mm)。此外,SoftArgmax模型在Frankfort水平方面达到了1.15O的倾斜误差。为了与先前的艺术进行公平的比较,我们还报告了在横向平面上预计的结果。

In this paper, we address the problem of automatic three-dimensional cephalometric analysis. Cephalometric analysis performed on lateral radiographs doesn't fully exploit the structure of 3D objects due to projection onto the lateral plane. With the development of three-dimensional imaging techniques such as CT, several analysis methods have been proposed that extend to the 3D case. The analysis based on these methods is invariant to rotations and translations and can describe difficult skull deformation, where 2D cephalometry has no use. In this paper, we provide a wide overview of existing approaches for cephalometric landmark regression. Moreover, we perform a series of experiments with state of the art 3D convolutional neural network (CNN) based methods for keypoint regression: direct regression with CNN, heatmap regression and Softargmax regression. For the first time, we extensively evaluate the described methods and demonstrate their effectiveness in the estimation of Frankfort Horizontal and cephalometric points locations for patients with severe skull deformations. We demonstrate that Heatmap and Softargmax regression models provide sufficient regression error for medical applications (less than 4 mm). Moreover, the Softargmax model achieves 1.15o inclination error for the Frankfort horizontal. For the fair comparison with the prior art, we also report results projected on the lateral plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源