论文标题
使仿射对应在摄像机几何计算中起作用
Making Affine Correspondences Work in Camera Geometry Computation
论文作者
论文摘要
本地功能,例如SIFT及其仿射和学到的变体提供区域到区域,而不是点对点对应关系。最近已经利用了这一点,以创建新的最小求解器,以解决经典问题,例如同型,基本和基本矩阵估计。这样的求解器的主要优点是它们的样本量较小,例如,仅需要两次匹配来估计同型。提议此类求解器的作品通常声称由于更少的勒索迭代率,运行时间的改善通常会有所改善。我们表明,如果求解器被天然使用,则该论点在实践中无效。为了克服这一点,我们提出了在完整的模型估计管道过程中有效使用区域到区域匹配的指南。我们提出了一种通过基于对称强度的匹配来完善局部特征几何形状的方法,将RANSAC内部的不确定性传播与先发制的模型验证相结合,显示了计算最小求解器结果不确定性的一般方案,并适应了样品的欢笑性检查以进行同型估算。我们的实验表明,在遵循我们的指南时,仿射求解器可以在更快的跑步时达到基于点的求解器的准确性。我们在https://github.com/danini/affine-correspessence-for-camera-deometry上提供代码。
Local features e.g. SIFT and its affine and learned variants provide region-to-region rather than point-to-point correspondences. This has recently been exploited to create new minimal solvers for classical problems such as homography, essential and fundamental matrix estimation. The main advantage of such solvers is that their sample size is smaller, e.g., only two instead of four matches are required to estimate a homography. Works proposing such solvers often claim a significant improvement in run-time thanks to fewer RANSAC iterations. We show that this argument is not valid in practice if the solvers are used naively. To overcome this, we propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline. We propose a method for refining the local feature geometries by symmetric intensity-based matching, combine uncertainty propagation inside RANSAC with preemptive model verification, show a general scheme for computing uncertainty of minimal solvers results, and adapt the sample cheirality check for homography estimation. Our experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times when following our guidelines. We make code available at https://github.com/danini/affine-correspondences-for-camera-geometry.