论文标题

基于可区分特征群集的图像分割的无监督学习

Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering

论文作者

Kim, Wonjik, Kanezaki, Asako, Tanaka, Masayuki

论文摘要

在本研究中研究了卷积神经网络(CNN)对无监督图像分割的使用。在提出的方法中,标签预测和网络参数学习已交替迭代以满足以下标准:(a)应为相同特征的像素分配相同的标签,(b)(b)应在空间上连续像素分配相同的标签,并且(c)唯一标签的数量应大。尽管这些标准是不兼容的,但所提出的方法最大程度地降低了相似性损失和空间连续性损失的组合,以找到合理的标签分配解决方案,以衡量上述标准很好。这项研究的贡献是四倍。首先,我们提出了一个新颖的端到端网络,该网络是无监督的图像分割的,该网络由标准化和可区分聚类的argmax函数组成。其次,我们引入了空间连续性损失函数,以减轻先前工作所具有的固定段边界的局限性。第三,我们提出了用涂鸦作为用户输入进行分割的提议分割方法的扩展,在保持效率的同时,它显示出比现有方法更好的准确性。最后,我们通过在不重新训练网络的情况下使用预先训练的几个参考图像进行预训练的网络,介绍了所提出的方法的另一个扩展:看不见的图像分割。在图像分割的几个基准数据集上检查了所提出的方法的有效性。

The usage of convolutional neural networks (CNNs) for unsupervised image segmentation was investigated in this study. In the proposed approach, label prediction and network parameter learning are alternately iterated to meet the following criteria: (a) pixels of similar features should be assigned the same label, (b) spatially continuous pixels should be assigned the same label, and (c) the number of unique labels should be large. Although these criteria are incompatible, the proposed approach minimizes the combination of similarity loss and spatial continuity loss to find a plausible solution of label assignment that balances the aforementioned criteria well. The contributions of this study are four-fold. First, we propose a novel end-to-end network of unsupervised image segmentation that consists of normalization and an argmax function for differentiable clustering. Second, we introduce a spatial continuity loss function that mitigates the limitations of fixed segment boundaries possessed by previous work. Third, we present an extension of the proposed method for segmentation with scribbles as user input, which showed better accuracy than existing methods while maintaining efficiency. Finally, we introduce another extension of the proposed method: unseen image segmentation by using networks pre-trained with a few reference images without re-training the networks. The effectiveness of the proposed approach was examined on several benchmark datasets of image segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源