论文标题

关于翻译平铺的傅立叶分析标准的示例

An example concerning Fourier analytic criteria for translational tiling

论文作者

Lev, Nir

论文摘要

众所周知,在l^1(\ Mathbb {r}^d)$中的函数$ f \,其沿晶格$λ$形成瓷砖的函数可以完全表征其傅立叶变换的零集。我们构建了一个离散集$λ\ subset \ mathbb {r} $(整数的少量扰动)的示例,对于这种函数而言,这是不可能的:有两个函数$ f,g \ in l^1(\ mathbb {r})$,其傅立叶变换的同一$ f +是$ f +。

It is well-known that the functions $f \in L^1(\mathbb{R}^d)$ whose translates along a lattice $Λ$ form a tiling, can be completely characterized in terms of the zero set of their Fourier transform. We construct an example of a discrete set $Λ\subset \mathbb{R}$ (a small perturbation of the integers) for which no characterization of this kind is possible: there are two functions $f, g \in L^1(\mathbb{R})$ whose Fourier transforms have the same set of zeros, but such that $f + Λ$ is a tiling while $g + Λ$ is not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源