论文标题

用深层现实的分类分类器解决长尾识别

Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier

论文作者

Wu, Tz-Ying, Morgado, Pedro, Wang, Pei, Ho, Chih-Hui, Vasconcelos, Nuno

论文摘要

在现实世界中,长尾识别可以解决自然的非均匀分布数据。尽管现代分类器在人口稠密的课程上表现良好,但其性能在尾巴上大大降低。然而,人类对此的影响较小,因为当面对不确定的例子时,他们只是选择提供更粗糙的预测。由此激发的是,深层现实的分类分类器(DEEP-RTC)被提出是解决长尾问题的新解决方案,将现实主义与等级预测相结合。该模型可以选择在分类法的不同级别上拒绝分类的样本,一旦无法保证所需的性能。在训练过程中,通过随机树采样实现了Deep-RTC,以模拟更细或更粗的水平的所有可能的分类条件,并在推理时进行拒绝机制。长尾版的四个数据集(CIFAR100,AWA2,Imagenet和Inaturalist)的实验表明,所提出的方法保留了有关具有不同流行级别的所有类别的更多信息。 Deep-RTC还使用拟议的正确预测位(CPB)度量标准的拒绝文献中长尾识别,分层分类和学习中的最新方法。

Long-tail recognition tackles the natural non-uniformly distributed data in real-world scenarios. While modern classifiers perform well on populated classes, its performance degrades significantly on tail classes. Humans, however, are less affected by this since, when confronted with uncertain examples, they simply opt to provide coarser predictions. Motivated by this, a deep realistic taxonomic classifier (Deep-RTC) is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions. The model has the option to reject classifying samples at different levels of the taxonomy, once it cannot guarantee the desired performance. Deep-RTC is implemented with a stochastic tree sampling during training to simulate all possible classification conditions at finer or coarser levels and a rejection mechanism at inference time. Experiments on the long-tailed version of four datasets, CIFAR100, AWA2, Imagenet, and iNaturalist, demonstrate that the proposed approach preserves more information on all classes with different popularity levels. Deep-RTC also outperforms the state-of-the-art methods in longtailed recognition, hierarchical classification, and learning with rejection literature using the proposed correctly predicted bits (CPB) metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源