论文标题

通过歧管移动最小二乘,从点云中近似riemannian度量

Approximating the Riemannian Metric from Point Clouds via Manifold Moving Least Squares

论文作者

Sober, Barak, Ravier, Robert, Daubechies, Ingrid

论文摘要

从欧几里得空间的嵌入式submanifold $ \ mathcal {m} $中采样的点云上的测量距离和最短路径的近似值一直是计算几何形状的长期挑战。给定采样分辨率参数$ h $,最先进的离散方法产生$ o(h)$可证明的近似值。在本文中,我们调查了通过流动最小二乘(歧管-MLS)进行的这种近似值的融合,这种方法使用来自Sober \&Levin开发的给定点云的信息构建了一种近似的歧管$ \ Mathcal {M}^h $,该信息是由Sober \&Levin开发的。 $ \ MATHCAL {M} $是一个没有边界的紧凑型歧管)$ \ Mathcal {M}^H $的Riemannian度量近似于$ \ Mathcal {M}的Riemannian Metric,$。明确,给定点$ p_1,p_2 \ in \ Mathcal {m} $,带有地理距离$ρ_{\ Mathcal {m}}}(p_1,p_2)$,我们显示他们的相应点$ p_1^h,p_1^h,p_2^h \ in \ in \ nath \ nath \ nathcal undance use ρ_ {\ Mathcal {M}^H}(p_1^h,p_2^h)=ρ_{\ Mathcal {m}}}(p_1,p_1,p_2)(1 + o(h^{k-1}}))$(i。然后,我们使用此结果,以及可以用任何所需分辨率对$ \ Mathcal {M}^H $进行采样的事实,以设计一种天真的算法,该算法可产生近似地球距离,并具有收敛速率$ O(H^{K-1})$。我们在某些数值模拟上显示了所提出方法的噪声的潜力和鲁棒性。

The approximation of both geodesic distances and shortest paths on point cloud sampled from an embedded submanifold $\mathcal{M}$ of Euclidean space has been a long-standing challenge in computational geometry. Given a sampling resolution parameter $ h $, state-of-the-art discrete methods yield $ O(h) $ provable approximations. In this paper, we investigate the convergence of such approximations made by Manifold Moving Least-Squares (Manifold-MLS), a method that constructs an approximating manifold $\mathcal{M}^h$ using information from a given point cloud that was developed by Sober \& Levin in 2019. In this paper, we show that provided that $\mathcal{M}\in C^{k}$ and closed (i.e. $\mathcal{M}$ is a compact manifold without boundary) the Riemannian metric of $ \mathcal{M}^h $ approximates the Riemannian metric of $ \mathcal{M}, $. Explicitly, given points $ p_1, p_2 \in \mathcal{M}$ with geodesic distance $ ρ_{\mathcal{M}}(p_1, p_2) $, we show that their corresponding points $ p_1^h, p_2^h \in \mathcal{M}^h$ have a geodesic distance of $ ρ_{\mathcal{M}^h}(p_1^h,p_2^h) = ρ_{\mathcal{M}}(p_1, p_2)(1 + O(h^{k-1})) $ (i.e., the Manifold-MLS is nearly an isometry). We then use this result, as well as the fact that $ \mathcal{M}^h $ can be sampled with any desired resolution, to devise a naive algorithm that yields approximate geodesic distances with a rate of convergence $ O(h^{k-1}) $. We show the potential and the robustness to noise of the proposed method on some numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源