论文标题
Z. Janko定理的改进
A refinement on a theorem of Z. Janko
论文作者
论文摘要
我们说,如果对于每个$ x \ in G $,则在$ g $中隔离一个子组$ h $,我们在h $中有$ x \ in h $或$ \ langle x \ rangle \ rangle \ cap h = {1} $。 Z. Janko,在他的论文中[J。代数,465(2016),41--61],确定了某些有限的nonabelian $ p $ - 群体,它们具有一些孤立的亚组。在本说明中,他的论文定理进行了完善。
We say that a subgroup $H$ is isolated in a group $G$ if for each $x\in G$ we have either $x\in H$ or $\langle x\rangle \cap H={1}$. Z. Janko, in his paper [J. Algebra, 465(2016), 41--61], determined certain classes of finite nonabelian $p$-groups which possess some isolated subgroups. In this note, a theorem of his paper is refined.