论文标题
高维多层广义线性模型的估计 - 第一部分:确切的MMSE估计器
Estimation for High-Dimensional Multi-Layer Generalized Linear Model -- Part I: The Exact MMSE Estimator
论文作者
论文摘要
这项两部分的工作认为,对于高维多层的广义线性模型(ML-GLM)的最小值误差(MMSE)估计问题,类似于一个馈送正常的完全连接的深度学习网络,因为其每个层都将随机输入与已知的加权矩阵一起激活,并在此处通过某些分布函数激活结果,并在此外分布了某些分布,并在此处分布了,并且该函数是主体。工作的第一部分着重于确切的MMSE估计器,其实施已知不可行。对于此确切的估计量,对性能进行了渐近分析,使用从某些方面进行完善的新副本方法进行。然后建立了一个脱钩原理,这表明,就关节输入和估计分布而言,多输入多输出的原始估计问题确实与仅受到添加剂白色高斯噪声(AWGN)的简单单输入单输出相同。 AWGN的差异进一步证明是由一些耦合方程式确定的,其对权重和激活的依赖性得到明确和分析。与现有结果相比,本文是第一个为ML-GLM估计问题提供脱钩原则的文章。为了进一步解决精确解决方案的实施问题,第二部分提出了一个近似估计量ML-GAMP,其触及率复杂性与GAMP一样低,而其渐近MSE(如果融合)与确切的MMSE估计器一样最佳。
This two-part work considers the minimum means square error (MMSE) estimation problem for a high dimensional multi-layer generalized linear model (ML-GLM), which resembles a feed-forward fully connected deep learning network in that each of its layer mixes up the random input with a known weighting matrix and activates the results via non-linear functions, except that the activation here is stochastic and following some random distribution. Part I of the work focuses on the exact MMSE estimator, whose implementation is long known infeasible. For this exact estimator, an asymptotic analysis on the performance is carried out using a new replica method that is refined from certain aspects. A decoupling principle is then established, suggesting that, in terms of joint input-and-estimate distribution, the original estimation problem of multiple-input multiple-output is indeed identical to a simple single-input single-output one subjected to additive white Gaussian noise (AWGN) only. The variance of the AWGN is further shown to be determined by some coupled equations, whose dependency on the weighting and activation is given explicitly and analytically. Comparing to existing results, this paper is the first to offer a decoupling principle for the ML-GLM estimation problem. To further address the implementation issue of an exact solution, Part II proposes an approximate estimator, ML-GAMP, whose per-iteration complexity is as low as GAMP, while its asymptotic MSE (if converged) is as optimal as the exact MMSE estimator.