论文标题

一致性Gordon和McIntosh模拟theta函数$ξ(q)$的系数

Congruences for the coefficients of the Gordon and McIntosh mock theta function $ξ(q)$

论文作者

da Silva, Robson, Sellers, James A.

论文摘要

最近,戈登(Gordon)和麦金托什(McIntosh)介绍了由$$ξ(q)= 1+2 \ sum_ {n = 1}^{\ infty} \ frac {q^{6n n^2-6n^2-6n+1}}} {(q; q^6){n} n} n}(q^n}(q^5)}(q^5) $$我们在本文中的目标是研究该功能系数的算术特性。我们介绍了许多此类属性,包括几个无限的Ramanujan家族(类似的一致性)。

Recently Gordon and McIntosh introduced the third order mock theta function $ξ(q)$ defined by $$ ξ(q)=1+2\sum_{n=1}^{\infty}\frac{q^{6n^2-6n+1}}{(q;q^6)_{n}(q^5;q^6)_{n}}. $$ Our goal in this paper is to study arithmetic properties of the coefficients of this function. We present a number of such properties, including several infinite families of Ramanujan--like congruences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源