论文标题

Landau量化了切丁晶格的动力学和光谱

Landau Quantized Dynamics and Spectrum of the Diced Lattice

论文作者

Horing, N. J. M.

论文摘要

在这项工作中,根据相关的假蛋白1 Green的功能,研究了磁性兰道量化在切丁晶格荷载体的动力学和光谱中的作用。该绿色函数的9个矩阵元素的运动方程在位置/频率表示形式中配制,并以仅涉及基本功能的封闭形式积分表示明确求解。后者随后在拉瓜勒特征功能系列中扩展,其频率将Landau定量切成丁的晶格的离散的能量光谱为$ε_n= \ pm \ pm \ sqrt {2(2n+1)α^2 eb} $($ a)从$ b $上的$ε_n$的非依赖性线性依赖性,类似于其他Dirac材料(Graphene,Vi dichalcogenides组)的相应$ \ sqrt {b} - $依赖性。

In this work the role of magnetic Landau quantization in the dynamics and spectrum of Diced Lattice charge carriers is studied in terms of the associated pseudospin 1 Green's function. The equations of motion for the 9 matrix elements of this Green's function are formulated in position/frequency representation and are solved explicitly in terms of a closed form integral representation involving only elementary functions. The latter is subsequently expanded in a Laguerre eigenfunction series whose frequency poles identify the discretized energy spectrum for the Landau-quantized Diced Lattice as $ε_n = \pm\sqrt{2(2n+1)α^2 eB}$ ($α\sqrt{2}$ is the characteristic speed for the Diced Lattice) which differs significantly from the nonrelativistic linear dependence of $ε_n$ on $B$, and is similar to the corresponding $\sqrt{B}-$dependence of other Dirac materials (Graphene, Group VI Dichalcogenides).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源