论文标题

彩虹奇数周期

Rainbow odd cycles

论文作者

Aharoni, Ron, Briggs, Joseph, Holzman, Ron, Jiang, Zilin

论文摘要

我们证明,在完整的图形$ n $ vertices上的每个家庭(不一定是不同的)奇数周期$ o_1,\ dots,\ dots,\ dots,\ dots,\ dots,\ dots,\ dots,\ dots,\ dots $ o_1,\ dots $ o_1,\ dots $ o_1,\ lceil n/2 \ rceil-1} $中的每个家族$ n $ vertices上的$ k_n $中的每个家庭都有一个彩虹奇数(即,来自独特的$ o_i $'s,形成了一个奇数)。作为证明的一部分,我们表征了$ k_ {n+1} $的$ n $奇数周期的那些家族,这些循环没有任何彩虹奇数。我们还以$ k_ {n+1} $以及$ n $ en $ edge-edisch-disjoint非发行子图为$ k_ {n+1} $的那些$ n $ cycles的家族,而没有任何彩虹循环。

We prove that every family of (not necessarily distinct) odd cycles $O_1, \dots, O_{2\lceil n/2 \rceil-1}$ in the complete graph $K_n$ on $n$ vertices has a rainbow odd cycle (that is, a set of edges from distinct $O_i$'s, forming an odd cycle). As part of the proof, we characterize those families of $n$ odd cycles in $K_{n+1}$ that do not have any rainbow odd cycle. We also characterize those families of $n$ cycles in $K_{n+1}$, as well as those of $n$ edge-disjoint nonempty subgraphs of $K_{n+1}$, without any rainbow cycle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源