论文标题

稳定器状态的最佳验证

Optimal verification of stabilizer states

论文作者

Dangniam, Ninnat, Han, Yun-Guang, Zhu, Huangjun

论文摘要

量子状态的统计验证旨在证明给定未知状态是否有信心接近目标状态。到目前为止,仅针对不同状态群体发现了基于局部测量的样本最佳验证方案:双分部分纯状态,GHz状态和反对称基础状态。在这项工作中,我们使用Pauli测量结果研究了对纠缠稳定剂态的系统最佳验证。首先,我们基于可分离的测量值对任何验证协议的样品复杂性提供了一个下限,该测量与量子数的数量和特定的稳定态无关。然后,我们提出了一种简单的算法,用于基于Pauli测量值构建最佳协议。我们的计算表明,基于Pauli测量值的最佳协议可以使所有纠缠稳定剂状态的上述结合饱和,并且对于最多七个QUAT的状态,该主张被明确验证。当每一方仅选择两个测量设置(例如X和Z)时,得出类似的结果。此外,由于色数,我们为验证任何图形状态所需的最小设置数量提供了上限,预计将是紧密的。对于实验者,明确为所有等效类别的稳定剂状态提供了最低设置数量的最佳协议和协议,最多可以提供七个量子。对于理论家而言,稳定器状态的一般结果(尤其是图形状态)以及此处得出的相关结构在量子状态验证之外可能具有独立的兴趣。

Statistical verification of a quantum state aims to certify whether a given unknown state is close to the target state with confidence. So far, sample-optimal verification protocols based on local measurements have been found only for disparate groups of states: bipartite pure states, GHZ states, and antisymmetric basis states. In this work, we investigate systematically optimal verification of entangled stabilizer states using Pauli measurements. First, we provide a lower bound on the sample complexity of any verification protocol based on separable measurements, which is independent of the number of qubits and the specific stabilizer state. Then we propose a simple algorithm for constructing optimal protocols based on Pauli measurements. Our calculations suggest that optimal protocols based on Pauli measurements can saturate the above bound for all entangled stabilizer states, and this claim is verified explicitly for states up to seven qubits. Similar results are derived when each party can choose only two measurement settings, say X and Z. Furthermore, by virtue of the chromatic number, we provide an upper bound for the minimum number of settings required to verify any graph state, which is expected to be tight. For experimentalists, optimal protocols and protocols with the minimum number of settings are explicitly provided for all equivalent classes of stabilizer states up to seven qubits. For theorists, general results on stabilizer states (including graph states in particular) and related structures derived here may be of independent interest beyond quantum state verification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源