论文标题

语义分割的类动态图形卷积

Class-wise Dynamic Graph Convolution for Semantic Segmentation

论文作者

Hu, Hanzhe, Ji, Deyi, Gan, Weihao, Bai, Shuai, Wu, Wei, Yan, Junjie

论文摘要

最近的作品通过以扩张的卷积,金字塔池或自我发项机制来利用上下文信息,在语义细分方面取得了重大进展。为了避免以前的作品中潜在的误导性上下文信息聚合,我们提出了一个按类动态图形卷积(CDGC)模块来适应传播信息。图推理是在同一类中的像素之间执行的。基于建议的CDGC模块,我们进一步介绍了类动态图形卷积网络(CDGCNET),该网络由两个主要部分组成,包括CDGC模块和基本分割网络,形成了粗到5的范式。具体而言,CDGC模块将粗分割结果作为类蒙版,以提取图形构造的节点特征,并在构造图上执行动态图卷积,以了解特征聚合和权重分配。然后将精制功能和原始功能融合以获得最终预测。我们对三个流行的语义细分基准进行了广泛的实验,包括CityScapes,Pascal VOC 2012和可可件东西,并在所有三个基准测试中实现最先进的性能。

Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. In order to avoid potential misleading contextual information aggregation in previous works, we propose a class-wise dynamic graph convolution (CDGC) module to adaptively propagate information. The graph reasoning is performed among pixels in the same class. Based on the proposed CDGC module, we further introduce the Class-wise Dynamic Graph Convolution Network(CDGCNet), which consists of two main parts including the CDGC module and a basic segmentation network, forming a coarse-to-fine paradigm. Specifically, the CDGC module takes the coarse segmentation result as class mask to extract node features for graph construction and performs dynamic graph convolutions on the constructed graph to learn the feature aggregation and weight allocation. Then the refined feature and the original feature are fused to get the final prediction. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源