论文标题

一种无监督的学习方法,用于根据自动编码器和图像梯度求解芯片上的热量方程

An unsupervised learning approach to solving heat equations on chip based on Auto Encoder and Image Gradient

论文作者

He, Haiyang, Pathak, Jay

论文摘要

在即将到来的5G和AI芯片包装系统中,解决芯片上的传热方程变得非常关键。但是,必须对数据驱动的监督机器学习模型进行批次模拟。数据驱动的方法是饥饿的,为了解决这个问题,已经提出了物理知情的神经网络(PINN)。但是,香草pinn模型一次求解一个固定热方程,因此必须对具有不同源项的热方程进行重新训练。此外,必须解决与多目标优化有关的问题,同时使用PINN最大程度地减少PDE残留,满足边界条件并符合观察到的数据等。因此,本文研究了一种无监督的学习方法,用于求解芯片上的热传递方程,而无需使用解决方案数据,而无需使用解决方案的网络,以预测培训的解决方案,以预测供热量的未看到量级的量级。具体而言,设计了自动编码器(AE)和基于图像梯度(IG)网络的混合框架。 AE用于编码热方程的不同源项。基于IG的网络实现了用于结构化网格的二阶中心差算法,并最大程度地减少了PDE残差。通过求解各种用例的热方程来评估设计网络的有效性。事实证明,由于培训AE网络的源术语数量有限,该框架不仅可以通过单个培训过程解决给定的传热问题,而且还可以对看不见的情况(具有新源术语的热量方程)做出合理的预测,而无需再进行重新训练。

Solving heat transfer equations on chip becomes very critical in the upcoming 5G and AI chip-package-systems. However, batches of simulations have to be performed for data driven supervised machine learning models. Data driven methods are data hungry, to address this, Physics Informed Neural Networks (PINN) have been proposed. However, vanilla PINN models solve one fixed heat equation at a time, so the models have to be retrained for heat equations with different source terms. Additionally, issues related to multi-objective optimization have to be resolved while using PINN to minimize the PDE residual, satisfy boundary conditions and fit the observed data etc. Therefore, this paper investigates an unsupervised learning approach for solving heat transfer equations on chip without using solution data and generalizing the trained network for predicting solutions for heat equations with unseen source terms. Specifically, a hybrid framework of Auto Encoder (AE) and Image Gradient (IG) based network is designed. The AE is used to encode different source terms of the heat equations. The IG based network implements a second order central difference algorithm for structured grids and minimizes the PDE residual. The effectiveness of the designed network is evaluated by solving heat equations for various use cases. It is proved that with limited number of source terms to train the AE network, the framework can not only solve the given heat transfer problems with a single training process, but also make reasonable predictions for unseen cases (heat equations with new source terms) without retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源