论文标题

无监督的多域MRI腹部器官分割的统一跨模式特征驱动器

Unified cross-modality feature disentangler for unsupervised multi-domain MRI abdomen organs segmentation

论文作者

Jiang, Jue, Veeraraghavan, Harini

论文摘要

我们的贡献是用于多域图像翻译和多器官分割的统一的跨模式特征分离方法。我们使用CT作为标记的源域,我们的方法学会了将没有标记的数据的多模式(T1加权和T2加权)MRI分割。我们的方法使用各种自动编码器(VAE)将图像内容从样式中解散。 VAE限制了样式的编码,以匹配通用先验(高斯),该特征被认为可以跨越所有源和目标方式的样式。提取的图像样式被转换为潜在样式缩放代码,该代码可根据图像内容功能从目标域代码根据目标域代码进行调节以生成多模式图像。最后,我们介绍了一个匹配的联合分布匹配歧视器,该分配匹配歧视器将翻译图像与任务相关的分段概率图结合在一起,以进一步限制和正规化图像到图像图像(I2i)翻译。我们与多个最新的I2I翻译和分割方法进行了广泛的比较。我们的方法导致最低平均多域图像重建误差为1.34 $ \ pm $ 0.04。我们的方法为T1W的平均骰子相似性系数(DSC)的平均骰子相似性系数(DSC)为0.85,用于多器官分割的T2W MRI为0.90,这与完全监督的MRI MRI多器官分割网络(DSC为0.86的T1W,T1W的DSC为0.90,T2W MRI为0.90)。

Our contribution is a unified cross-modality feature disentagling approach for multi-domain image translation and multiple organ segmentation. Using CT as the labeled source domain, our approach learns to segment multi-modal (T1-weighted and T2-weighted) MRI having no labeled data. Our approach uses a variational auto-encoder (VAE) to disentangle the image content from style. The VAE constrains the style feature encoding to match a universal prior (Gaussian) that is assumed to span the styles of all the source and target modalities. The extracted image style is converted into a latent style scaling code, which modulates the generator to produce multi-modality images according to the target domain code from the image content features. Finally, we introduce a joint distribution matching discriminator that combines the translated images with task-relevant segmentation probability maps to further constrain and regularize image-to-image (I2I) translations. We performed extensive comparisons to multiple state-of-the-art I2I translation and segmentation methods. Our approach resulted in the lowest average multi-domain image reconstruction error of 1.34$\pm$0.04. Our approach produced an average Dice similarity coefficient (DSC) of 0.85 for T1w and 0.90 for T2w MRI for multi-organ segmentation, which was highly comparable to a fully supervised MRI multi-organ segmentation network (DSC of 0.86 for T1w and 0.90 for T2w MRI).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源