论文标题

广义的非交流空间和投影几何形状

Generalized noncommutative Snyder spaces and projective geometry

论文作者

Gubitosi, Giulia, Ballesteros, Angel, Herranz, Francisco J.

论文摘要

给定一组运动学对称发生器,可以通过投射几何形状构建兼容的非交换时空和变形相位空间。这是H.S.提出的第一个非共同时空模型背后的主要思想。斯奈德(Snyder)在1947年。在这个框架中,时空坐标是在所需的发电机下是对称的歧管上的翻译发电机,而Momenta则是这种歧管上的投射坐标。在这些会议记录中,我们回顾了欧几里得和洛伦兹非交通型Snyder空间的构建,并研究了这种构造在选择物理动量时留下的自由,因为投影坐标的可用选择不同。特别是,我们得出了欧几里得和洛伦兹Snyder非交通模型的准经典结构,使它们的相空间代数是对角线,尽管不再是二次。

Given a group of kinematical symmetry generators, one can construct a compatible noncommutative spacetime and deformed phase space by means of projective geometry. This was the main idea behind the very first model of noncommutative spacetime, proposed by H.S. Snyder in 1947. In this framework, spacetime coordinates are the translation generators over a manifold that is symmetric under the required generators, while momenta are projective coordinates on such a manifold. In these proceedings we review the construction of Euclidean and Lorentzian noncommutative Snyder spaces and investigate the freedom left by this construction in the choice of the physical momenta, because of different available choices of projective coordinates. In particular, we derive a quasi-canonical structure for both the Euclidean and Lorentzian Snyder noncommutative models such that their phase space algebra is diagonal although no longer quadratic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源