论文标题
元学习,具有潜在空间聚类在生成对抗网络中,用于说话者诊断
Meta-learning with Latent Space Clustering in Generative Adversarial Network for Speaker Diarization
论文作者
论文摘要
具有X-Vector嵌入的大多数说话者诊断系统的性能既容易受到嘈杂的环境的影响,又缺乏域的鲁棒性。使用Engoder Network(clustergan)将发电性对抗网络(GAN)(GAN)用于将X-向量投影到潜在空间中的早期工作,对会议数据显示了有希望的性能。在本文中,我们扩展了Clustergan网络,以改善诊断鲁棒性,并能够在各种具有挑战性的领域进行快速概括。为此,我们从clustergan获取了预训练的编码器,并通过在元学习范式下使用典型损失(Meta-Clustergan或McGan)进行微调。实验是在呼叫者电话对话,AMI会议数据,DIHARD II(DEV SET)上进行的,其中包括挑战多域语料库以及两个与自闭症谱系障碍域相关的童阵互动互动公司(ADOS,BOSCC)。对实验数据进行了广泛的分析,以研究拟议中的clustergan和McGAN嵌入对X-矢量的有效性。结果表明,提出的具有归一化最大特征GENGAP光谱聚类(NME-SC)后端的拟议嵌入始终超过了Kaldi最先进的Z-Vector诊断系统。最后,我们采用嵌入融合与X-向量的融合,从而进一步改善诊断性能。我们使用X-向量上的拟议融合嵌入在上述数据集上实现上述数据集的相对诊断错误率(DER)提高了6.67%至53.93%。此外,与电话数据中的X-Vectors和Clustergan相比,McGAN的嵌入在说话者估计数量和短语音段诊断的数量方面提供了更好的性能。
The performance of most speaker diarization systems with x-vector embeddings is both vulnerable to noisy environments and lacks domain robustness. Earlier work on speaker diarization using generative adversarial network (GAN) with an encoder network (ClusterGAN) to project input x-vectors into a latent space has shown promising performance on meeting data. In this paper, we extend the ClusterGAN network to improve diarization robustness and enable rapid generalization across various challenging domains. To this end, we fetch the pre-trained encoder from the ClusterGAN and fine-tune it by using prototypical loss (meta-ClusterGAN or MCGAN) under the meta-learning paradigm. Experiments are conducted on CALLHOME telephonic conversations, AMI meeting data, DIHARD II (dev set) which includes challenging multi-domain corpus, and two child-clinician interaction corpora (ADOS, BOSCC) related to the autism spectrum disorder domain. Extensive analyses of the experimental data are done to investigate the effectiveness of the proposed ClusterGAN and MCGAN embeddings over x-vectors. The results show that the proposed embeddings with normalized maximum eigengap spectral clustering (NME-SC) back-end consistently outperform Kaldi state-of-the-art z-vector diarization system. Finally, we employ embedding fusion with x-vectors to provide further improvement in diarization performance. We achieve a relative diarization error rate (DER) improvement of 6.67% to 53.93% on the aforementioned datasets using the proposed fused embeddings over x-vectors. Besides, the MCGAN embeddings provide better performance in the number of speakers estimation and short speech segment diarization as compared to x-vectors and ClusterGAN in telephonic data.