论文标题

无人机的部分观察下的异质无人系统的运动计划

Motion Planning for Heterogeneous Unmanned Systems under Partial Observation from UAV

论文作者

Chen, Ci, Wan, Yuanfang, Li, Baowei, Wang, Chen, Xie, Guangming, Jiang, Huanyu

论文摘要

对于由无人驾驶汽车(UAV)和无人接地车辆(UGVS)组成的异质无人系统,使用无人机用作眼睛来帮助UGV进行运动计划,这是一个有希望的研究方向,因为无人机的广阔视图范围。但是,由于无人机飞行高度限制,可能无法观察全球地图,而本地地图中的运动计划是POMDP(部分可观察到的马尔可夫决策过程)问题。本文提出了一种在无人机的部分观察结果的非均匀无人系统的运动计划算法而没有重新构造全球地图,该算法分别由设计用于感知和决策的两个部分组成。对于感知部分,我们提出了网格地图生成网络(GMGN),该网络用于从无人机的角度看待场景,并对途径和障碍进行分类。对于决策部分,我们提出了运动命令生成网络(MCGN)。由于增加了记忆机制,MCGN在无人机的部分观察下具有计划和推理能力。我们通过与基线算法进行比较来评估我们提出的算法。结果表明,我们的方法有效地计划了异质无人系统的运动,并达到了相对较高的成功率。

For heterogeneous unmanned systems composed of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), using UAVs serve as eyes to assist UGVs in motion planning is a promising research direction due to the UAVs' vast view scope. However, due to UAVs flight altitude limitations, it may be impossible to observe the global map, and motion planning in the local map is a POMDP (Partially Observable Markov Decision Process) problem. This paper proposes a motion planning algorithm for heterogeneous unmanned system under partial observation from UAV without reconstruction of global maps, which consists of two parts designed for perception and decision-making, respectively. For the perception part, we propose the Grid Map Generation Network (GMGN), which is used to perceive scenes from UAV's perspective and classify the pathways and obstacles. For the decision-making part, we propose the Motion Command Generation Network (MCGN). Due to the addition of memory mechanism, MCGN has planning and reasoning abilities under partial observation from UAVs. We evaluate our proposed algorithm by comparing with baseline algorithms. The results show that our method effectively plans the motion of heterogeneous unmanned systems and achieves a relatively high success rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源