论文标题

动态$ {\ frak {sl}} _ 2 $ bethe代数和函数在quasi-polynomials成对上

Dynamical ${\frak{sl}}_2$ Bethe algebra and functions on pairs of quasi-polynomials

论文作者

Slinkin, A., Thompson, D., Varchenko, A.

论文摘要

我们考虑空间$ \ text {fun} _ {\ frak {\ frak {sl} _2} v [0] V [0] $在$ \ frak {sl {sl} _2 $的cartan subalgebra上具有零重量子空间$ v [0] $ nirifucible-dimente $ $ $ $ sl的值的值。我们考虑在$ \ text {fun} _ {\ frak {sl} _2} \,v [0] $上的差异操作员的代数$ \ Mathcal b $,由V.Rubtsov,A.Silantyev,a.silantyev,d.talalaev,d.talalaev在2009年之间。 $ \ text {fun} _ {\ frak {sl} _2} v [0] $和成对的quasi-polynomials。

We consider the space $\text{Fun}_{\frak{sl}_2}V[0]$ of functions on the Cartan subalgebra of $\frak{sl}_2$ with values in the zero weight subspace $V[0]$ of a tensor product of irreducible finite-dimensional $\frak{sl}_2$-modules. We consider the algebra $\mathcal B$ of commuting differential operators on $\text{Fun}_{\frak{sl}_2}\,V[0]$, constructed by V.Rubtsov, A.Silantyev, D.Talalaev in 2009. We describe the relations between the action of $\mathcal B$ on $\text{Fun}_{\frak{sl}_2}V[0]$ and spaces of pairs of quasi-polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源