论文标题
DeepDive:深层可分离卷积神经网络的综合算法/体系结构共同设计
DeepDive: An Integrative Algorithm/Architecture Co-Design for Deep Separable Convolutional Neural Networks
论文作者
论文摘要
可分离的卷积神经网络(DSCNN)已通过提供具有结构稀疏性的模块化网络来成为新兴的范式,以实现更高的精度,而操作和参数相对较低。但是,缺乏定制的体系结构可以提供适合DSCNNS稀疏性的灵活解决方案。本文介绍了DeepDive,这是一个完整的垂直共同设计框架,用于在Edge FPGAS上实施DSCNN。 DeepDive的体系结构支持至关重要的异质计算单元(CUS),以完全支持DSCNN,这些DSCNN与各种卷积的操作员与结构稀疏相关联。它提供了FPGA感知的培训和在线量化,并结合了可用于DSCNNS定制的模块化合成的C ++ CU。在Xilinx的ZCU102 FPGA板上执行结果,分别显示为Mobilenet-V2的47.4和233.3 fps/watt,以及一个紧凑的Efficity版本,作为两个最先进的深度可分离性CNN。这些比较展示了DeepDive如何分别比Jetson Nano High和低功率模式分别将FPS/WATT提高2.2 $ \ times $和1.51 $ \ times $。它还在其他两个FPGA实现中增强了fps/watt约2.27 $ \ times $和37.25 $ \ times $。 Mobilenetv2的深水输出可在https://github.com/tecsar-uncc/deepdive上获得。
Deep Separable Convolutional Neural Networks (DSCNNs) have become the emerging paradigm by offering modular networks with structural sparsity in order to achieve higher accuracy with relatively lower operations and parameters. However, there is a lack of customized architectures that can provide flexible solutions that fit the sparsity of the DSCNNs. This paper introduces DeepDive, which is a fully-functional, vertical co-design framework, for power-efficient implementation of DSCNNs on edge FPGAs. DeepDive's architecture supports crucial heterogeneous Compute Units (CUs) to fully support DSCNNs with various convolutional operators interconnected with structural sparsity. It offers an FPGA-aware training and online quantization combined with modular synthesizable C++ CUs, customized for DSCNNs. The execution results on Xilinx's ZCU102 FPGA board, demonstrate 47.4 and 233.3 FPS/Watt for MobileNet-V2 and a compact version of EfficientNet, respectively, as two state-of-the-art depthwise separable CNNs. These comparisons showcase how DeepDive improves FPS/Watt by 2.2$\times$ and 1.51$\times$ over Jetson Nano high and low power modes, respectively. It also enhances FPS/Watt about 2.27$\times$ and 37.25$\times$ over two other FPGA implementations. The DeepDive output for MobileNetV2 is available at https://github.com/TeCSAR-UNCC/DeepDive.