论文标题
二进制Kerr的沉默
The silence of binary Kerr
论文作者
论文摘要
非平凡的$ \ MATHCAL {S} $ - 矩阵通常意味着纠缠的产生:从传入的纯状态开始,散射通常会返回具有不存在的纠缠熵的外向状态。然后,询问是否存在非平凡的$ \ MATHCAL {S} $ - 矩阵的矩阵。在这封信中,我们认为答案是古典黑洞的散射。我们研究了任意旋转颗粒散射中的自旋键入。随着Thomas-Wigner旋转因子的增强,我们从重力诱导的$ 2 \ rightarrow 2 $振幅中得出了纠缠熵。在Eikonal限制中,我们发现相对的纠缠熵在此定义为\ textIt {差异}之间的\ textit {in}和\ textit {out} states的纠缠熵,对于\ textit {in vextit vextit {in vextit {in vextit vextit vistly vextit {in vextit vextit vextit viste {in}的次数均几乎是零的,并且均不显着,并且均不明显。这表明旋转颗粒的最小耦合(其经典极限对应于Kerr Black Hole)具有产生接近零纠缠的独特特征。
A non-trivial $\mathcal{S}$-matrix generally implies a production of entanglement: starting with an incoming pure state the scattering generally returns an outgoing state with non-vanishing entanglement entropy. It is then interesting to ask if there exists a non-trivial $\mathcal{S}$-matrix that generates no entanglement. In this letter, we argue that the answer is the scattering of classical black holes. We study the spin-entanglement in the scattering of arbitrary spinning particles. Augmented with Thomas-Wigner rotation factors, we derive the entanglement entropy from the gravitational induced $2\rightarrow 2$ amplitude. In the Eikonal limit, we find that the relative entanglement entropy, defined here as the \textit{difference} between the entanglement entropy of the \textit{in} and \textit{out}-states, is nearly zero for minimal coupling irrespective of the \textit{in}-state, and increases significantly for any non-vanishing spin multipole moments. This suggests that minimal couplings of spinning particles, whose classical limit corresponds to Kerr black hole, has the unique feature of generating near zero entanglement.