论文标题

非Xtremal黑洞可以成为粒子加速器吗?

Can a nonextremal black hole be a particle accelerator?

论文作者

Zaslavskii, O. B.

论文摘要

我们考虑在非Xtremal黑洞的背景下的粒子碰撞。两个粒子从无穷大掉落,粒子1进行微调(临界),碰撞发生在其转折点。第一个例子是Reissner-Nordström(RN)。如果Infinity $ E_ {1} $处的能量足够大,则转折点接近地平线。然后,我们得出一个简单的公式,根据该公式,$ e_ {c.m。} \ sim e_ {1}κ^{ - 1/2} $,其中$κ$是表面重力。因此,如果(i)粒子1是超偏移主义的(如果两个粒子都是超偏移主义的,那么与平面时空的碰撞相比,这不会带来任何增益,(ii)一个黑洞是接近超级的(小$κ$)。在多个碰撞的情况下,能量$ e_ {c.m。} $在每个单独的碰撞中都是有限的。但是,如果新的近临界颗粒足够重,它可以在随后的碰撞中生长。对于中性旋转的黑洞,如果(i)转折点远离地平线,但大$ e_ {c.m。} $仍然是可能的。案例(II)与RN度量中的碰撞相似。我们制定了一个一般的理论方案,直接的天体物理应用可以是要研究的下一步。

We consider particle collisions in the background of a nonextremal black hole. Two particles fall from infinity, particle 1 is fine-tuned (critical), collision occurs in its turning point. The first example is the Reissner-Nordström (RN) one. If the energy at infinity $E_{1}$ is big enough, the turning point is close to the horizon. Then, we derive a simple formula according to which $E_{c.m.}\sim E_{1}κ^{-1/2}$, where $κ$ is a surface gravity. Thus significant growth of $E_{c.m.}$ is possible if (i) particle 1 is ultrarelativistic (if both particles are ultrarelativistic, this gives no gain as compared to collisions in flat space-time), (ii) a black hole is near-extremal (small $κ$). In the scenario of multiple collisions the energy $E_{c.m.}$ is finite in each individual collision. However, it can grow in subsequent collisions, provided new near-critical particles are heavy enough. For neutral rotating black holes, in case (i) a turning point remains far from the horizon but large $E_{c.m.}$ is still possible. Case (ii) is similar to that for collisions in the RN metric. We develop a general theoretical scheme, direct astrophysical applications can be a next step to be studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源