论文标题

无限的frizes和Annuli的三角形

Infinite friezes and triangulations of annuli

论文作者

Baur, Karin, Canakci, Ilke, Jacobsen, Karin M., Kulkarni, Maitreyee C., Todorov, Gordana

论文摘要

众所周知,任何无限的饰边都来自Baur,Parsons和Tschabold对环的三角剖分。在本文中,我们表明,每个周期性的无限饰面都以一种独特的方式决定了对环的三角测量。由于环形的每个三角剖分都决定了一对friezes,因此我们研究了这样的对,并展示了它们如何相互决定。我们研究相关的模块类别,并根据模块及其尿道序列确定一对架的生长系数。

It is known that any infinite frieze comes from a triangulation of an annulus by Baur, Parsons and Tschabold. In this paper we show that each periodic infinite frieze determines a triangulation of an annulus in essentially a unique way. Since each triangulation of an annulus determines a pair of friezes, we study such pairs and show how they determine each other. We study associated module categories and determine the growth coefficient of the pair of friezes in terms of modules as well as their quiddity sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源