论文标题
分数扩散波方程的后退问题
Backward problems in time for fractional diffusion-wave equation
论文作者
论文摘要
在本文中,对于时间分数扩散波方程$ \ pppa u(x,x,t)= -au(x,t)$,$ 0 <t <t <t <t <t <t <t <t <t <t <t <t <t $ in(1,2)$,我们在(1,2)$ in(1,2)$中,我们考虑到后退问题:确定$ u(\ cd)$,$ 0 <t)$,$ 0 <t $ cd $ u(t) $ \ ppp_tu(\ cdot,t)$。我们证明,存在一个无数的无限集$λ\(0,\ infty)$,带有唯一的累积点$ 0 $,因此向后问题适合$ t \ not \inλ$。
In this article, for a time-fractional diffusion-wave equation $\pppa u(x,t) = -Au(x,t)$, $0<t<T$ with fractional order $α\in (1,2)$, we consider the backward problem in time: determine $u(\cdot,t)$, $0<t<T$ by $u(\cdot,T)$ and $\ppp_tu(\cdot,T)$. We proved that there exists a countably infinite set $Λ\in (0,\infty)$ with a unique accumulation point $0$ such that the backward problem is well-posed for $T \not\in Λ$.