论文标题

采取深度学习驱动的入侵检测方法

Toward a Deep Learning-Driven Intrusion Detection Approach for Internet of Things

论文作者

Ge, Mengmeng, Syed, Naeem Firdous, Fu, Xiping, Baig, Zubair, Robles-Kelly, Antonio

论文摘要

物联网(IoT)为我们的日常生活带来了巨大的好处,包括我们定期与之互动的各种应用领域,从医疗自动化到运输和智能环境。但是,由于资源和计算功能受到限制,物联网网络容易受到各种网络攻击。因此,捍卫IoT网络免受对抗攻击至关重要。在本文中,我们通过应用深度学习技术为物联网网络提供了一种新颖的入侵检测方法。我们采用了一个尖端的物联网数据集,其中包括物联网轨迹和现实的攻击流量,包括拒绝服务,分布式拒绝服务,侦察和信息盗窃攻击。我们利用单个数据包中的标头字段信息作为通用特征来捕获一般网络行为,并开发一个带有嵌入图层(用于编码高维分类特征)的馈电神经网络模型来进行多类分类。随后采用转移学习的概念来编码高维分类特征来构建二进制分类器。通过评估所提出的方法获得的结果表明,二进制和多类分类器的分类精度高。

Internet of Things (IoT) has brought along immense benefits to our daily lives encompassing a diverse range of application domains that we regularly interact with, ranging from healthcare automation to transport and smart environments. However, due to the limitation of constrained resources and computational capabilities, IoT networks are prone to various cyber attacks. Thus, defending the IoT network against adversarial attacks is of vital importance. In this paper, we present a novel intrusion detection approach for IoT networks through the application of a deep learning technique. We adopt a cutting-edge IoT dataset comprising IoT traces and realistic attack traffic, including denial of service, distributed denial of service, reconnaissance and information theft attacks. We utilise the header field information in individual packets as generic features to capture general network behaviours, and develop a feed-forward neural networks model with embedding layers (to encode high-dimensional categorical features) for multi-class classification. The concept of transfer learning is subsequently adopted to encode high-dimensional categorical features to build a binary classifier. Results obtained through the evaluation of the proposed approach demonstrate a high classification accuracy for both binary and multi-class classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源