论文标题

至$ k $ -subSequence普遍性的编辑距离

The Edit Distance to $k$-Subsequence Universality

论文作者

Fleischmann, Pamela, Kosche, Maria, Koß, Tore, Manea, Florin, Siemer, Stefan

论文摘要

如果可以通过删除其一些字母来从$ w $中获得$ w $ u $的单词$ u $。如果长度为$ k $ of $ w $ of alph $(w)=σ$的单词$ w $称为$ k $ -subSequence通用,则$ w​​ $的长度$ k $ of $ w $ of $ w $ of $ w $ of $ k $ of $σ$。我们提出了一系列有效的算法,以计算最小数量的编辑操作(插入,删除,替换),需要应用于给定单词以达到$ k $ -subsequence通用单词的集合。

A word $u$ is a subsequence of another word $w$ if $u$ can be obtained from $w$ by deleting some of its letters. The word $w$ with alph$(w)=Σ$ is called $k$-subsequence universal if the set of subsequences of length $k$ of $w$ contains all possible words of length $k$ over $Σ$. We propose a series of efficient algorithms computing the minimal number of edit operations (insertion, deletion, substitution) one needs to apply to a given word in order to reach the set of $k$-subsequence universal words.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源