论文标题

SBI-用于基于仿真推理的工具包

SBI -- A toolkit for simulation-based inference

论文作者

Tejero-Cantero, Alvaro, Boelts, Jan, Deistler, Michael, Lueckmann, Jan-Matthis, Durkan, Conor, Gonçalves, Pedro J., Greenberg, David S., Macke, Jakob H.

论文摘要

科学家和工程师采用随机数值模拟器来对经验观察到的现象进行建模。与纯粹的统计模型相反,模拟器表达了科学原理,这些原理提供了强大的归纳偏见,改善对新数据或场景的概括,并允许更少,更容易解释和与域相关的参数。尽管有这些优势,但调整模拟器的参数,以使其输出匹配数据具有挑战性。基于仿真的推理(SBI)试图识别a)与先验知识兼容的参数集,b)匹配经验观察。重要的是,SBI不寻求恢复单个“最佳”数据兼容参数集,而是要识别所有解释观察到的数据的参数空间的所有高概率区域,从而量化了参数不确定性。在贝叶斯术语中,SBI旨在检索感兴趣的参数的后验分布。与常规的贝叶斯推断相反,当人们可以运行模型模拟时,SBI也适用,但是不存在用于评估给定参数数据概率(即可能性)的公式或算法。我们提出了$ \ texttt {sbi} $,这是一种基于Pytorch的软件包,该软件包实现了基于神经网络的SBI算法。 $ \ texttt {sbi} $通过为最先进的算法提供统一的界面以及文档和教程,从而促进了黑框模拟器的推理,以实践科学家和工程师。

Scientists and engineers employ stochastic numerical simulators to model empirically observed phenomena. In contrast to purely statistical models, simulators express scientific principles that provide powerful inductive biases, improve generalization to new data or scenarios and allow for fewer, more interpretable and domain-relevant parameters. Despite these advantages, tuning a simulator's parameters so that its outputs match data is challenging. Simulation-based inference (SBI) seeks to identify parameter sets that a) are compatible with prior knowledge and b) match empirical observations. Importantly, SBI does not seek to recover a single 'best' data-compatible parameter set, but rather to identify all high probability regions of parameter space that explain observed data, and thereby to quantify parameter uncertainty. In Bayesian terminology, SBI aims to retrieve the posterior distribution over the parameters of interest. In contrast to conventional Bayesian inference, SBI is also applicable when one can run model simulations, but no formula or algorithm exists for evaluating the probability of data given parameters, i.e. the likelihood. We present $\texttt{sbi}$, a PyTorch-based package that implements SBI algorithms based on neural networks. $\texttt{sbi}$ facilitates inference on black-box simulators for practising scientists and engineers by providing a unified interface to state-of-the-art algorithms together with documentation and tutorials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源